Abs­tracts


Plea­se ob­ser­ve:
The fol­lo­wing lis­ting is pr­eli­mi­na­ry and not com­ple­te.

Index (Au­thors, Tit­les)


G. Ada­mi­dis, T. N. Ka­pe­t­ana­kis, and I. O. Var­diam­ba­sis:
Di­gi­tal Real-time Audio Fre­quen­cy Spec­trum Ana­ly­zer De­ve­lop­ment for Audio De­vices.

G. Ada­mi­dis, I. O. Var­diam­ba­sis, A. Ka­pra­na, T. N. Ka­pe­t­ana­kis, and M. P. Io­an­ni­dou:
Ver­sa­ti­le Ex­pe­ri­men­tal Equip­ment for In­ves­ti­ga­ti­on of Au­di­to­ry Brains­tem Re­spon­se Chan­ges in Rab­bits Due to GSM-900 Mo­bi­le Phone Ra­dia­ti­on Ex­posure.

G. Ada­mi­dis, T. N. Ka­pe­t­ana­kis, and I. O. Var­diam­ba­sis:
De­ve­lop­ment of a 28-bit 1.5GHz Fre­quen­cy Coun­ter.

Io­an­nis Chatza­kis:
MCU based Con­t­rol Unit for Batte­ry Ma­nage­ment Sys­tems.

Pedro Mar­ques, José Fon­se­ca:
Using wire­less com­mu­ni­ca­ti­ons in mu­nici­pal irri­ga­ti­on sys­tems.

K. Fysa­ra­kis, Cha­ra­lam­pos Ma­ni­fa­vas, Kon­stan­ti­nos Ran­tos:
Em­bed­ded Sys­tems Se­cu­ri­ty.

Luc Fri­ant:
C# and .NET Micro Frame­work for em­bed­ded sys­tems.

Ul­rich Jet­zek, David Kledt­ke:
El­ga­mal En­cryp­ti­on and its ap­pli­ca­ti­on to El­licp­tic Curve Cryp­to­gra­phy.

Jun Zhang, Chong Cao, Han­nes Rei­mers, Huang Zhe­min, Ste­fan Koß, Hel­mut Di­spert:
Lo­ca­li­za­ti­on of WSN Nodes using Ul­tra­sound Trans­du­cers.

G. Lio­da­kis, A. Maras:
Spa­ti­al Con­text Is­su­es based on Sto­cha­stic Geo­me­try Mo­de­ling  for Am­bi­ent Wire­less Net­works.

Nikos Ma­ni­as, Ge­or­ge Pa­la­mas, Ge­or­ge Pa­pa­dou­ra­kis, Ma­no­lis Ka­voussa­nos:
Free area map­ping with the use of au­to­mo­bi­le ro­bots.

Fe­li­pe An­to­nio Moura Mi­ran­da, Car­los Al­ber­to dos Reis Filho:
Life­time Ma­xi­mi­za­ti­on With Mul­ti­ple Batte­ry Le­vels in Ir­re­gu­lar­ly Dis­tri­bu­ted Wire­less Sen­sor Net­works.

Gho­drat Mog­hadam­pour:
In­tro­duc­tion to QT Pro­gramming.

Heik­ki Pa­lo­mä­ki:
GEN­SEN Pro­ject: New Plat­forms and Ap­pli­ca­ti­ons in Wire­less Au­to­ma­ti­on.

Gior­gos Pa­pa­dou­ra­kis, Mi­cha­el Sfa­kiota­kis, Hassan Kag­haz­chi:
Co­ope­ra­ti­ve Net­work Trai­ning (CoNeT) Pro­ject.

Gior­gos Pa­pa­dou­ra­kis, Tsa­m­pi­kos Kounalakis, De­li­gi­an­nis Io­an­nis, Nikos Ma­ni­as, Ge­or­gi­os Tri­an­tafyl­li­dis, Julie Van­den­abee­le, Ilkka Uusi­ta­lo:
A Guar­di­an Angel For The Ex­ten­ded Home En­vi­ron­ment (GUA­RAN­TEE) pro­ject.

Ge­or­ge M. Pa­pa­dou­ra­kis, Tsa­m­pi­kos Kounalakis, De­li­gi­an­nis Io­an­nis, Nikos Ma­ni­as, Ge­or­gi­os Tri­an­tafyl­li­dis:
De­cis­i­on En­gi­ne De­sign for GUA­RAN­TEE pro­ject.

Ta­xi­ar­chis Pa­pa­kos­t­as, De­me­tri­os A. Plia­kis, Con­stan­ti­ne Pe­tri­des, Spi­ros Tha­na­sou­las:
Har­mo­nic Con­tour Seg­men­ta­ti­on.

C. Pe­tri­dis, K. Tsi­tou, E. Mav­ro­gior­gou, I. Ka­lia­kat­sos and M. Ta­ta­ra­kis:
How to or­ga­ni­ze an Eras­mus In­ten­si­ve Pro­gram: A study case in the De­part­ment of Elec­tro­nics of TEI of Crete.

Anssi Iko­nen:
A fol­low-up on Chal­len­ge Based Lear­ning pro­ject in Em­bed­ded En­gi­nee­ring Edu­ca­ti­on.

Jas­per Ren­ders, Kevin Ver­waest, Luc Fri­ant, Marco Ca­mil­li, Ri­chard Klei­horst:
A smart ca­me­ra based on an op­ti­cal mouse sen­sor.

J. Reyn­ders, M. Spe­lier, N. Maes, G. Van Ham, B. Vande Meers­sche, G. De­co­ninck:
Prac­ti­cal use of En­er­gy Ma­nage­ment Sys­tems.

S. Ur­sel­la, G. Schoe­ne­berg, A. Hein­zel­mann:
Hard­ware for Elec­tro Car­diac and Re­spi­ra­to­ry Ple­thys­mo­gra­phy Mea­su­re­ment in a Multi Vital Signs Mo­ni­to­ring Sys­tem

Smail Menani:
De­ve­lo­ping New So­lu­ti­ons for Smart Grid.

Hel­mut Di­spert, Jo­seph A. Mor­gan, Mark Mc­Ma­hon, Chris­ti­ne Bou­din:
ACE and ISPS – An In­no­va­ti­ve Ap­proach to Pro­mo­ting In­ter­na­tio­nal Stu­dent Ex­chan­ge Pro­grams.

 


Ab­tracts

Di­gi­tal Real-time Audio Fre­quen­cy Spec­trum Ana­ly­zer De­ve­lop­ment for Audio De­vices.

  • Au­thors:
    G. Ada­mi­dis, T. N. Ka­pe­t­ana­kis, and I. O. Var­diam­ba­sis:
    Broad­band Com­mu­ni­ca­ti­ons and Elec­tro­ma­gne­tic Ap­pli­ca­ti­ons La­bo­ra­to­ry, De­part­ment of Elec­tro­nics,
    Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te (TEI) of Crete, Cha­nia Branch, GR-73133 Cha­nia, Crete, Greece
  • Key­wor­ds:

Spec­trum ana­ly­zers are em­ploy­ed in most of the mo­dern si­gnal pro­ces­sing sys­tems for mea­su­ring the dis­tri­bu­ti­on of si­gnal en­er­gy in fre­quen­cy. An audio spec­trum ana­ly­zer is used for mea­su­re­ments in the au­di­ble fre­quen­cy spec­trum (from 0 to 20000 Hz) and can be a very power­ful tool for kee­ping a stu­dio well tuned. A di­gi­tal, real-time audio fre­quen­cy spec­trum ana­ly­zer cir­cuit for audio de­vices is pre­sen­ted in this work. This cir­cuit could be use­ful to an­yo­ne who would like to embed it in an audio de­vice or use it as a stand-alone unit.

The pro­po­sed di­gi­tal, real-time audio spec­trum ana­ly­zer cir­cuit for audio de­vices can be con­nec­ted to any audio de­vice, as it is: (a) ac­cep­ting an ana­lo­gue audio si­gnal as input, (b) di­gi­ti­zing and pro­ces­sing the audio si­gnal using a DSP, (c) com­pu­ting the dis­tri­bu­ti­on of the audio si­gnal en­er­gy to 20 spe­ci­fic fre­quen­cy bands, and (d) dis­play­ing the en­er­gy dis­tri­bu­ti­on on a 20x20 LED dis­play.

The cir­cuit is based on a dsPIC30F6012A, which is cho­sen for its fea­ture set matching the re­qui­re­ments of this work. The built-in 12-bit A/D con­ver­ter, the ti­mer3 timer (for ADC ti­ming) and a quad of dual MCP6022 op-amps for anti-alia­sing fil­te­ring and gain, di­gi­ti­se the in­co­ming ana­lo­gue audio si­gnal. The di­gi­tal re­pre­sen­ta­ti­on of the ana­lo­gue audio si­gnal is pro­ces­sed in real time using the pro­ces­sor’s DSP en­gi­ne. The DSP pro­ces­sing in­clu­des win­do­wing, fast Fou­rier trans­form and squa­re­ma­gni­tu­de (power) com­pu­ta­ti­on. This way, a dis­crete di­gi­tal re­pre­sen­ta­ti­on of the si­gnal power in fre­quen­cy is ob­tai­ned. Fur­ther­mo­re, a fil­ter-ban­king al­go­rithm is ap­plied to the ob­tai­ned dis­crete spec­tral­power, re­sul­ting in the im­ple­men­ta­ti­on of a 20 non uni­form-band par­al­lel ana­ly­sis fil­ter- bank. This fil­ter bank is used to de­com­po­se the audio si­gnal power into a set of 20 sub band si­gnals. Each sub-band si­gnal re­pres­ents the total audio si­gnal power in each of the 20 spec­tral bands and is dis­played on a 20-LED bar graph. There are 20 bar graphs (one for each spec­tral band), each one con­sis­ting of 20 LEDs and, as such, a 20x20 LED-dis­play is used.

The main ad­van­ta­ges of the pro­po­sed cir­cuit are the fol­lo­wing:

  • it has low-cost and can be em­bed­ded in any audio de­vice,
  • it uses a simp­le, low cost 20x20 LED dis­play,
  • it sup­ports four dif­fe­rent dis­play modes,
  • it pro­vi­des very good fre­quen­cy and am­pli­tu­de re­so­lu­ti­on (0.431 oc­ta­ves from 31 to 15.000Hz and 1.3 db from 0 to –28db),
  • it can be powered from a sin­gle 5V power sup­ply,
  • it of­fers si­mul­ta­neous mo­ni­to­ring of the en­ti­re audio si­gnal band in real time,
  • it uses a sin­gle pro­ces­sor for both DSP and dis­play con­trol­ling

index

Ver­sa­ti­le Ex­pe­ri­men­tal Equip­ment for In­ves­ti­ga­ti­on of Au­di­to­ry Brains­tem Re­spon­se Chan­ges in Rab­bits Due to GSM-900 Mo­bi­le Phone Ra­dia­ti­on Ex­posure.

  • Au­thors:
    G. Ada­mi­dis1, I. O. Var­diam­ba­sis1, A. Ka­pra­na2, T. N. Ka­pe­t­ana­kis1, and M. P. Io­an­ni­dou3:
    1Broad­band Com­mu­ni­ca­ti­ons and Elec­tro­ma­gne­tic Ap­pli­ca­ti­ons La­bo­ra­to­ry, De­part­ment of Elec­tro­nics, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te (TEI) of Crete, Cha­nia Branch, GR-73133 Cha­nia, Crete, Greece
    2ENT De­part­ment. Uni­ver­si­ty Hos­pi­tal of Crete, GR-71110 He­ra­kli­on, Crete, Greece
    3De­part­ment of Elec­tro­nics, Alex­an­der Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Thes­sa­lo­ni­ki, GR-57400 Thes­sa­lo­ni­ki, Greece
  • Key­wor­ds:

In­ter­na­tio­nal sci­en­ti­fic re­se­arch con­firms that elec­tro­ma­gne­tic fiel­ds are bio­lo­gi­cal­ly ac­ti­ve in ani­mals and hu­mans, and in some cases can cause dis­com­fort and di­sea­se [1]. Es­pe­cial­ly ra­dio­fre­quen­cy ra­dia­ti­on from mo­bi­le phone use has been as­so­cia­ted in many stu­dies to an in­crea­sed risk for brain tu­mors. Of all ana­to­mic­al struc­tu­res, the ear is clo­sest to the mo­bi­le phone du­ring usage and a num­ber of stu­dies have been car­ri­ed out in­ves­ti­ga­ting the ef­fect of mo­bi­le phone ra­dia­ti­on on the au­di­to­ry sys­tem. In a re­cent ex­pe­ri­men­tal ani­mal study [2], the pos­si­ble elec­tro­phy­sio­lo­gi­cal time-re­la­ted chan­ges in au­di­to­ry pa­thway du­ring mo­bi­le phone elec­tro­ma­gne­tic field ex­posure were in­ves­ti­ga­ted.
Au­di­to­ry brains­tem re­spon­se (ABR) is an elec­tri­cal si­gnal evo­ked from the brains­tem and the cen­tral au­di­to­ry pa­thway after sound sti­mu­la­ti­on of the ear. The pro­ce­du­re is to ge­ne­ra­te a brief click or tone pip from ear­pho­nes and to mea­su­re the eli­ci­ted neu­ro­nal ac­tion po­ten­ti­als by sur­face elec­tro­des, ty­pi­cal­ly pla­ced at the ver­tex of the scalp and ear lobes. The am­pli­tu­de (mi­cro­vol­ta­ge) of the si­gnal is aver­a­ged and char­ted ver­sus time (msec), si­mi­lar­ly to elec­tro­en­ce­pha­logra­phy. ABR au­dio­me­try pro­vi­de a uni­que me­thod for non-in­va­si­ve study of the pa­tho­phy­sio­lo­gy of the human or other mam­mal hea­ring sys­tem. Since 1971, the ABR re­cording me­thod has been stan­dar­di­zed and used in­crea­singly in otor­hi­no­la­ryn­go­lo­gy cli­nics to eva­lua­te sym­ptoms and pro­blems re­la­ted to the au­di­to­ry pa­thway.
The ABR si­gnal is cha­rac­te­ri­zed by a se­ri­es of ver­tex po­si­ti­ve peaks la­be­led from I to VII. The la­ten­ci­es of the first five peaks, which re­pre­sent brains­tem trans­mis­si­on time and the­re­fo­re brains­tem au­di­to­ry pro­ces­sing, are the most im­por­tant pa­ra­me­ters for eva­lua­ti­on and dia­gno­sis by me­di­cal ex­perts. The ana­ly­sis of ABRs is usual­ly con­duc­ted ma­nu­al­ly, fol­lo­wing a four-step pro­ce­du­re: de­ter­mi­na­ti­on of the re­spon­ses’ pre­sence, de­tec­tion of the main peaks, esti­ma­ti­on of the dif­fe­rent la­ten­ci­es bet­ween I, II, III, IV, and V peaks, and dia­gno­sis of the pos­si­ble pro­blem.
As de­scri­bed in [2], seve­r­al rab­bits under ge­ne­ral an­esthe­sia were ra­dia­ted via a power- and fre­quen­cy­ad­justa­ble radio trans­mit­ter, which was de­si­gned and ma­nu­fac­tu­red ac­cording to the needs of the ex­pe­ri­ment for GSM-900 mo­bi­le phone emis­si­on si­mu­la­ti­on. The trans­mit­ter was pla­ced near the ear of each sub­ject and the an­ten­na was pla­ced in the ent­ran­ce of the ex­ter­nal au­di­to­ry bony canal. ABRs were re­cor­ded du­ring ra­dia­ti­on (real time mea­su­re­ments) at re­gu­lar time in­ter­vals, using the EP25-Eclip­se plat­form (In­ter­acou­stics). [2]’s ex­pe­ri­men­tal study con­clu­ded that ex­posure to elec­tro­ma­gne­tic fiel­ds emit­ted by mo­bi­le pho­nes af­fects the nor­mal elec­tro­phy­sio­lo­gi­cal ac­ti­vi­ty of the au­di­to­ry sys­tem in rab­bits.
In order to mi­ni­mi­ze the cost of the ex­pe­ri­men­tal stu­dies of short and long-term ef­fects of mo­bi­le phone ra­dia­ti­on on au­di­to­ry and cen­tral ner­vous sys­tem, we have de­ve­lo­ped an ad­justa­ble power and fre­quen­cy radio trans­mis­si­on sys­tem for GSM-900 mo­bi­le phone emis­si­on si­mu­la­ti­on, which is de­scri­bed in this work The sys­tem pro­to­ty­pe has ten con­ti­nuous wave radio trans­mit­ters which func­tion in­de­pen­dent­ly, in order to have any num­ber of them ope­ra­ting at the same time. Each trans­mit­ter sends a sin­gle un­mo­du­la­ted con­ti­nuous wave radio-car­ri­er si­gnal. Thus, any trans­mit­ted radio-wave is an al­most clean (si­nu­so­idal) radio fre­quen­cy (RF) tone. The fre­quen­cy and power of each trans­mit­ter are ad­justa­ble at the range of 750-1050 MHz and 0-24 dbm (0-250 mW), re­spec­tive­ly. The total out­put har­mo­nic and spu­rious con­tent of each trans­mit­ter is -20 dbc (100 times below car­ri­er) and -30 dbc (1000 times below car­ri­er), re­spec­tive­ly. Thus, the trans­mit­ting si­gnal is al­most per­fect si­nu­so­idal.
Each trans­mit­ter has a LED in­di­ca­tor, a small wire an­ten­na and a thin shiel­ded-co­axi­al cable with a male RCA-type con­nec­tor. Any trans­mit­ter ra­dia­tes nor­mal­ly when con­nec­ted to a power out­let of the power sup­ply unit through its shiel­ded-co­axi­al cable and male RCA-type con­nec­tor. Du­ring nor­mal ope­ra­ti­on, the LED in­di­ca­tor of each trans­mit­ter is tur­ned on and the elec­tro­ma­gne­tic en­er­gy is ra­dia­ted ex­clu­si­ve­ly from the trans­mit­ter’s an­ten­na. No ra­dia­ti­on is emit­ted from any co­axi­al cable or the power sup­ply unit. Any trans­mit­ter can be con­nec­ted/ dis­con­nec­ted from the power sup­ply unit even when the power sup­ply unit is ac­ti­va­ted.
The trans­mit­ters are based on Maxim’s MA­X2623 in­te­gra­ted vol­ta­ge con­trol­led os­cil­la­tors and MA­X2402 in­te­gra­ted trans­mit­ters. Spec­trum ana­ly­sis of the power re­cei­ved from a ra­dia­ting trans­mit­ter and ty­pi­cal ope­ra­ting cha­rac­te­ristics were ob­tai­ned.

Re­fe­ren­ces
[1] A.E. Ka­pra­na, A.D. Ka­ratza­nis, E.P. Pro­ko­pa­kis, I.E. Pa­na­giota­ki, I.O. Var­diam­ba­sis, G. Ada­mi­dis, P. Chris­to­dou­lou, and G.A. Vele­g­ra­kis, "Stu­dy­ing the ef­fects of mo­bi­le phone use on the au­di­to­ry sys­tem and the cen­tral ner­vous sys­tem: A re­view of the li­te­ra­tu­re and fu­ture di­rec­tions", Eu­rope­an Ar­chi­ves of Oto-Rhino-La­ryn­go­lo­gy, vol. 265, no. 9, pp. 1011 - 1019, Sep. 2008.
[2] A.E. Ka­pra­na, T.S. Chi­mo­na, C.E. Pa­pa­da­kis, S.G. Vele­g­ra­kis, I.O. Var­diam­ba­sis, G. Ada­mi­dis, and G.A. Vele­g­ra­kis, “Au­di­to­ry brains­tem re­spon­se chan­ges du­ring ex­posure to GSM-900 ra­dia­ti­on. An ex­pe­ri­men­tal study”, Au­dio­lo­gy & Neu­ro­to­lo­gy, vol. 16, no. 4, pp. 270-276, 2011.

index

De­ve­lop­ment of a 28-bit 1.5GHz Fre­quen­cy Coun­ter.

  • Au­thors:
    G. Ada­mi­dis, T. N. Ka­pe­t­ana­kis, and I. O. Var­diam­ba­sis:
    Broad­band Com­mu­ni­ca­ti­ons and Elec­tro­ma­gne­tic Ap­pli­ca­ti­ons La­bo­ra­to­ry, De­part­ment of Elec­tro­nics
    Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te (TEI) of Crete, Cha­nia Branch, GR-73133 Cha­nia, Crete, Greece
  • Key­wor­ds:

Some peop­le say “you’d bet­ter build it than buy it”. Be­si­des sa­ving money you may also have a lot of fun, acqui­re new know­ledge and ex­pe­ri­en­ces. This work star­ted as a PIC lear­ning pro­ject, since it uses a base 8-bit PIC but it tur­ned out to be more than that. Alt­hough using an 8-bit PIC, a 28-bit coun­ter is ac­tual­ly im­ple­men­ted. The de­vice mea­su­res fre­quen­cy from 0.1 Hz to 1.5 GHz and dis­plays it on a 2x16 cha­rac­ter LCD dis­play. It of­fers a fre­quen­cy re­so­lu­ti­on up to the ama­zing 0.1 Hz for fre­quen­ci­es in the range of 0.1 Hz to 100 MHz and up to 4 Hz for fre­quen­ci­es in the range of 100 MHz to 1.5 GHz. Min and max hold func­tions, fre­quen­cy units’ selec­tion and gate time ad­just­ment are also sup­por­ted.
The fre­quen­cy (f) of any pe­ri­odic wa­veform can be cal­cu­la­ted by coun­ting the in­s­tan­ces (N) of the wa­veform du­ring a pre­cise time in­ter­val (dt) from f=N/dt. The fre­quen­cy mea­su­re­ment unit is the Hz and 1 Hz is de­fi­ned as one in­s­tan­ce per se­cond. Ac­cording to this ob­vious fre­quen­cy mea­su­ring tech­ni­que, the input wa­veform must first be con­ver­ted into an equi­va­lent di­gi­tal form. This di­gi­tal form is ac­tual­ly a fast swit­ching bi­na­ry si­gnal which pre­ser­ves the fre­quen­cy cha­rac­te­ristics of the input wa­veform. Then, an edge-trig­ge­red di­gi­tal coun­ter is used to ac­cu­ra­te­ly count (star­ting from 0) the N oc­cur­red pul­ses in a pre­cise time in­ter­val dt. This time in­ter­val is pro­vi­ded from an ac­cu­ra­te (re­fe­rence) time base. Af­ter­wards,
a mi­cro­con­trol­ler can be used to cal­cu­la­te the mea­su­red fre­quen­cy from f=N/dt and dis­play the re­sult on a com­mon dis­play unit.

index

MCU based Con­t­rol Unit for Batte­ry Ma­nage­ment Sys­tems.

  • Au­thors:
    Io­an­nis Chatza­kis:
    De­part­ment of Elec­tro­nics, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te (TEI) of Crete, Cha­nia Branch, GR-73133 Cha­nia, Crete, Greece
  • Key­wor­ds:

This paper pres­ents the de­sign and im­ple­men­ta­ti­on of a con­t­rol unit for a Batte­ry Ma­nage­ment Sys­tem that sup­ports char­ge and dis­char­ge equa­li­za­ti­on. The pro­po­sed con­t­rol sys­tem con­ti­nuous­ly checks the state of the batte­ry bank and ac­ti­va­tes the equa­li­za­ti­on in order to pro­tect the cells from over­char­ge, over­dis­char­ge, or to pro­vi­de fault to­le­ran­ce. The con­t­rol sys­tem uses an equa­li­zer ca­pa­ble to pro­vi­de char­ge and dis­char­ge equa­li­za­ti­on and to stand the full load cur­rent. A num­ber of sen­sors are added to the de­sign to pro­vi­de use­ful in­for­ma­ti­on to pre­dict the batte­ry state. Latch re­lays con­nect and dis­con­nect the batte­ry, in order to eli­mi­na­te the los­ses when the sys­tem is not in use. The whole sys­tem is based on a mi­cro­con­trol­ler unit (MCU) and sup­ports stand alone ope­ra­ti­on. It can also be in­ter­fa­ced with a PC, where an ap­pli­ca­ti­on pro­gram was de­ve­lo­ped ca­pa­ble to con­t­rol the sys­tem, and also to collect mea­su­res from the batte­ry bank, store and ex­port them in other com­pu­ter pro­grams data form. This way the sys­tem will have the abi­li­ty to equa­li­ze the batte­ry bank, get com­mands from the PC and pass mea­su­res and error messa­ges to the PC. Re­sults are pre­sen­ted.

 

index

Using wire­less com­mu­ni­ca­ti­ons in mu­nici­pal irri­ga­ti­on sys­tems.

  • Au­thors:
    Pedro Mar­ques1, José Fon­se­ca2,
    1Micro I/O, Por­tu­gal
    2IT / Uni­ver­si­ty of Avei­ro, Avei­ro, Por­tu­gal
  • Key­wor­ds:

Water is a sc­ar­ce re­sour­ce. Due to chan­ges in the Por­tu­gue­se le­gis­la­ti­on, mu­nici­pa­li­ties are now re­qui­red to pay the water they spend. Urban gar­dens are a use pro­blem as they are scat­te­red by the urban area and re­qui­re eit­her a mas­si­ve work to irri­ga­te or a poor ma­nage­ment of the irri­ga­ti­on with si­gni­fi­cant water waste. For in­s­tan­ce Va­guei­ra, a beach vil­la­ge near Avei­ro, has around 400 green spaces or small gar­dens that re­qui­re irri­ga­ti­on. The need to in­crea­se the ma­nage­ment of such areas as been re­co­gni­zed by the mu­nici­pa­li­ties of the CIRA as­so­cia­ti­on that in­clu­des all the mu­nici­pa­li­ties around Ria de Avei­ro, a large sal­ted lagoon in the re­gi­on.

In this paper, a pr­eli­mi­na­ry so­lu­ti­on to de­ve­lop a con­t­rol sys­tem for irri­ga­ti­on tar­ge­ted for such small urban green areas is pre­sen­ted. The sys­tem is au­to­no­mous, in­ex­pen­si­ve and has a si­gni­fi­cant au­to­no­my wit­hout mains sup­ply. It has two dis­tinc­ti­ve fea­tures that dif­fe­ren­tia­te it from tra­di­tio­nal con­trol­lers:

  • the gathe­ring of wea­ther in­for­ma­ti­on on­line in­s­tead of a lo­cal­ly
    in­stal­led wea­ther sta­ti­on
  • a wire­less sen­sor net­work built upon the IEEE stan­dard 802.15.4
    (which de­fi­nes the lower layer of the well known Zig­Bee
    pro­to­col).

The ar­chi­tec­tu­re of the sys­tem is pre­sen­ted in Fi­gu­re 1.

The sys­tem in­clu­des batte­ry powered val­ves with a 802.15.4 wire­less in­ter­face with ex­pec­ted 5 years au­to­no­my due to the type of val­ves used and to an ef­fici­ent com­mu­ni­ca­ti­on pro­to­col. It in­clu­des also hu­mi­di­ty sen­sors also with the same in­ter­face to sup­port the de­cis­i­on of start or stop the irri­ga­ti­on. It in­clu­des a co­or­di­na­tor unit that acts as a gate­way to a ser­ver in­ter­con­nec­ting the field de­vices to a con­t­rol cen­ter and can have other func­tiona­li­ties such as in­ter­con­nec­tion to a meter eit­her spe­ci­fic or stan­dard, e.g., M-bus based. The con­t­rol cen­ter of­fers dif­fe­rent ser­vices to the user in­clu­ding the de­fi­ni­ti­on of ma­nu­al or au­to­ma­tic ope­ra­ti­on and the ac­cess to local in­for­ma­ti­on such as the batte­ry sta­tus of each de­vice.

The con­t­rol cen­ter uses an ope­ra­ti­on model si­mi­lar to the one used by Micro I/O in one of its pro­ducts, a re­mo­te RFID card re­ader, which is being laun­ched with sup­port of one of the Por­tu­gue­se te­l­ecom­mu­ni­ca­ti­on com­pa­nies, Op­ti­mus. The con­t­rol cen­ter can re­co­gni­ze the place where the co­or­di­na­tor unit is in­stal­led using the LBS (Lo­ca­ti­on Based Ser­vices) of­fe­red by the te­l­ecom­mu­ni­ca­ti­on com­pany. Using this data the con­t­rol cen­ter can re­trie­ve data from on­line me­teo­ro­lo­gy sites and de­code this data to de­fi­ne the irri­ga­ti­on rules, de­pen­ding on the wea­ther fo­re­cast. The co­or­di­na­tor unit can then pick up the irri­ga­ti­on com­mands to act on site.

Fi­gu­re 1 

 Index

Em­bed­ded Sys­tems Se­cu­ri­ty.

  • Au­thors:
    K. Fysa­ra­kis, Cha­ra­lam­pos Ma­ni­fa­vas, Kon­stan­ti­nos Ran­tos:
    Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
  • Key­wor­ds:

Em­bed­ded Sys­tems (ESs), ac­count for a wide range of pro­ducts and are em­ploy­ed in va­rious he­te­ro­ge­neous do­mains, in­clu­ding but not li­mi­ted to:
in­dus­tri­al sys­tems (e.g. ma­nu­fac­tu­ring plants), cri­ti­cal en­vi­ron­ments (e.g. mi­li­ta­ry and avio­nics) no­ma­dic en­vi­ron­ments (e.g. per­so­nal we­a­ra­ble nodes), pri­va­te spaces (e.g. home) and pu­blic in­fra­st­ruc­tu­res (e.g. air­ports). These de­vices often need to ac­cess, store, ma­ni­pu­la­te, or com­mu­ni­ca­te sen­si­ti­ve and/or cri­ti­cal in­for­ma­ti­on, ma­king se­cu­ri­ty (con­fi­den­tia­li­ty, in­te­gri­ty and avai­la­bi­li­ty) of their re­sour­ces and ser­vices an im­pe­ra­ti­ve con­cern in their de­sign.
The pro­blem is exa­cer­ba­ted by their re­sour­ce cons­traints (na­me­ly com­pu­ta­tio­nal ca­pa­bi­li­ties, me­mo­ry and power), their di­ver­si­fied ap­pli­ca­ti­on set­tings, fre­quent­ly re­qui­ring un­at­ten­ded ope­ra­ti­on in phy­si­cal­ly in­se­cu­re en­vi­ron­ments and dy­na­mic net­work for­mu­la­ti­on, in con­junc­tion with the ever-pre­sent need for smal­ler size and lower pro­duc­tion costs.

This paper pro­vi­des an over­view of the chal­len­ges in ESs se­cu­ri­ty, per­tai­ning to node hard­ware and soft­ware as well as re­le­vant net­work pro­to­cols and cryp­to­gra­phic al­go­rithms, pres­ents re­cent ad­van­ces in the field and iden­ti­fies op­por­tu­nities for fu­ture re­se­arch.


Index

C# and .NET Micro Frame­work for em­bed­ded sys­tems.

  • Au­thors:
    Luc Fri­ant:
    K.H. Kem­pen Uni­ver­si­ty Col­le­ge, Geel, Bel­gi­um
  • Key­wor­ds:

Have you ever thought of some great idea for a pro­duct but you couldn't bring it to life.
Maybe be­cau­se tech­no­lo­gy wasn't on your side?
Or maybe thought, “there's got to be an ea­si­er way!”.
Maybe you are a pro­gram­mer that wan­ted to make a se­cu­ri­ty sys­tem but then thought using PCs are too ex­pen­si­ve to run a simp­le sys­tem?
The ans­wer is C# and Mi­cro­soft's .NET Micro Frame­work for em­bed­ded sys­tems!

An over­view of the fea­tures of C # for em­bed­ded sys­tems in a restric­ted list below.
- Di­gi­tal In­puts & Out­puts
- Puls With Mo­du­la­ti­on
- Ana­log input & out­put
- Se­ri­al in­ter­faces
- Dis­plays
- Time Ser­vices
- USB Host
- USB Cli­ent
- Net­wor­king
- Cryp­to­grag­hy
- XML
- Watch­dog
- Wire­less
- etc.


Index

El­ga­mal En­cryp­ti­on and its ap­pli­ca­ti­on to El­licp­tic Curve Cryp­to­gra­phy.

  • Au­thors:
    Ul­rich Jet­zek, David Kledt­ke
    Kiel Uni­ver­si­ty of Ap­plied Sci­en­ces, Ger­many
    Kiel, Ger­many
  • Key­wor­ds:

The El­ga­mal en­cryp­ti­on sche­me is a well-known asym­me­tric en­cryp­ti­on sche­me. It may be con­side­red as an ex­ten­si­on of the Dif­fie-Hell­man key ex­chan­ge pro­to­col. Its se­cu­ri­ty is based on the dis­crete lo­ga­rithm pro­blem and the Dif­fie-Hell­man pro­blem [1]. Asym­me­tric en­cryp­ti­on sche­mes re­qui­re ra­ther long keys in order to pro­vi­de a suf­fici­ent se­cu­ri­ty level. Hence, there per­for­mance is worse as com­pa­red to sym­me­tric en­cryp­ti­on sche­mes.

With the in­ven­ti­on of el­lip­tic curve cryp­to­gra­phy in re­cent years it is now pos­si­ble to reach the same se­cu­ri­ty level as for asym­me­tric en­cryp­ti­on sche­mes like the El­ga­mal en­cryp­ti­on with much shorter key lengths. E.g. if a 7680-bit key is used for El­ga­mal en­cryp­ti­on El­lip­tic curve cryp­to­gra­phy only re­qui­res a key length of 384 bit to reach the same se­cu­ri­ty level [1].

Within this talk it shall be de­mons­tra­ted how the El­ga­mal en­cryp­ti­on sche­me may be ap­plied to El­lip­tic curve cryp­to­gra­phy [2]. Throug­hout the cor­re­spon­ding pro­ject the El­ga­mal en­cryp­ti­on on El­lip­tic cur­ves has been im­ple­men­ted on a Spar­tan 3e-FPGA.

Re­fe­ren­ces:

[1] "Un­der­stan­ding Cryp­to­gra­phy", Au­thors: Chris­tof Paar, Jan Pelzl, Sprin­ger Ver­lag, 2010

[2] "Guide to El­lip­tic Curve Cryp­to­gra­phy", Au­thors: Dar­rel Han­ker­son, Al­fred Me­ne­zes, Scott Vanstone, Sprin­ger Ver­lag, 2004


Index

Lo­ca­li­za­ti­on of WSN Nodes using Ul­tra­sound Trans­du­cers.

  • Au­thors:
    Jun Zhang, Chong Cao, Han­nes Rei­mers, Huang Zhe­min, Ste­fan Koß, Hel­mut Di­spert
    Kiel Uni­ver­si­ty of Ap­plied Sci­en­ces, Ger­many
    Kiel, Ger­many
  • Key­wor­ds: WSN, Lo­ca­ti­on, Ul­tra­sound.

Since the first in­tro­duc­tion of mo­bi­le de­vices a cru­ci­al pro­blem has been the de­ter­mi­na­ti­on of their lo­ca­li­za­ti­on. With the ac­ce­le­ra­ted de­ve­lop­ment of low power and high­ly mi­nia­tu­ri­zed wire­less sen­sor net­work (WSN) nodes used in a high va­rie­ty of ap­pli­ca­ti­ons like en­vi­ro­nen­men­tal mo­ni­to­ring, am­bi­ent as­sisted li­ving sys­tems, etc. the ne­ces­si­ty for pro­vi­ding po­si­tio­nal in­for­ma­ti­on has be­co­me even more im­por­tant. Seve­r­al op­ti­ons have been sug­gested, but es­pe­cial­ly for in­door po­si­ti­on or na­vi­ga­ti­on sys­tems re­lia­ble, simp­le and cost ef­fec­ti­ve so­lu­ti­ons are not availa­ble.

Using an­gu­la­ti­on or la­te­ra­ti­on me­thods, dif­fe­rent phy­si­cal si­gnals can be ap­plied, e.g. RF, light (vi­si­ble, in­fra­red), etc.
In this paper we dis­cuss the en­han­ce­ment of a Zig­Bee-based wire­less sen­sor net­work sys­tem using ul­tra­sound trans­du­cers. Ul­tra­so­nic sound has been suc­cess­ful­ly ap­plied to pro­xi­mi­ty and di­s­tan­ce mea­su­re­ment sys­tems, the com­bi­na­ti­on of RF and sound al­lows for the pre­cise  lo­ca­li­za­ti­on of net­work nodes.


Index

Spa­ti­al Con­text Is­su­es based on Sto­cha­stic Geo­me­try Mo­de­ling for Am­bi­ent Wire­less Net­works.

  • Au­thors:
    G. Lio­da­kis1,2, A. Maras2
    1Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te (TEI) of Crete, Cha­nia Branch, Cha­nia, Crete, Greece
    2Uni­ver­si­ty of Pe­lo­pon­nese, Tri­po­lis, Ar­ca­dia, Greece
  • Key­wor­ds:

The in­crea­sing va­rie­ty and num­ber of eve­r­y­day de­vices (mo­bi­le pho­nes, do­me­stic ap­pli­an­ces, se­cu­ri­ty ca­me­ras, traf­fic lights and signs, etc.) equip­ped with em­bed­ded sen­sing, com­pu­ting and net­wor­king ca­pa­bi­li­ties and dis­tri­bu­ted throug­hout the phy­si­cal space, leads to the crea­ti­on of a ubi­qui­tous en­vi­ron­ment for nu­merous Am­bi­ent In­tel­li­gence (AmI) ap­pli­ca­ti­ons. A de­si­ra­ble fea­ture of such ap­pli­ca­ti­ons is that of con­text-awa­re­ness, i.e., the abi­li­ty of ap­pli­ca­ti­ons to re­co­gni­ze the en­vi­ron­ment in which they are exe­cu­ting.

 

Ta­king into ac­count the afo­re­men­tio­ned frame­work, we are con­cer­ned with the spa­ti­al con­text is­su­es that arise. In par­ti­cu­lar, as space (de­fi­ned in terms of area, length, pro­xi­mi­ty, or spa­ti­al re­la­ti­on­ships) and phy­si­cal lo­ca­ti­on (of users, wire­less com­mu­ni­ca­ti­on de­vices, cor­re­spon­ding ap­pli­ca­ti­ons) are of pri­ma­ry im­por­tan­ce for con­text-aware ap­pli­ca­ti­ons, an ap­pro­pria­te mo­de­ling should be de­vi­sed. Mo­reo­ver, as re­por­ted by pre­vious re­se­arch, geo­me­tri­cal ap­proa­ches may ad­dress pro­blems at struc­tu­ral, func­tional and ap­pli­ca­ti­on le­vels of sen­sor net­works.  

The ob­jec­ti­ve, thus, of the paper is to ex­ami­ne the sui­ta­bi­li­ty of a sto­cha­stic geo­me­try mo­de­ling ap­proach for am­bi­ent wire­less net­works. More spe­ci­fi­cal­ly, with re­fe­rence to two re­pre­sen­ta­ti­ve AmI ap­pli­ca­ti­ons (the im­ple­men­ta­ti­on of in­tel­li­gent traf­fic sys­tems for smart urban trans­port, the tar­ge­ted ad­ver­ti­se­ment ap­pli­ca­ti­on used in a mall for ad­dres­sing a per­son’s shop­ping pre­fe­ren­ces), our main in­te­rest is to ex­ami­ne the sui­ta­bi­li­ty of sto­cha­stic geo­me­try tools for the di­men­sio­ning, de­sign and per­for­mance eva­lua­ti­on of such wire­less net­works. As it con­cerns the sta­ti­s­ti­cal spa­ti­al mo­dels for wire­less nodes’ lo­ca­ti­ons, we con­sider other mo­dels than the Pois­son point pro­cess model  usual­ly em­ploy­ed as a first  ap­pro­xi­ma­ti­on. Fur­ther­mo­re, going beyond the or­di­na­ry pla­nar Vo­ro­noi dia­gram for spa­ti­al pro­xi­mi­ty mo­de­ling, we pro­po­se the use of the net­work Vo­ro­noi dia­grams in order to ac­count for the net­work space (such as a road net­work) and to deal with di­s­tan­ces de­fi­ned on a net­work (such as the shor­test-path di­s­tan­ce in­s­tead of the Eu­cli­de­an di­s­tan­ce).


Index

Free area map­ping with the use of au­to­mo­bi­le ro­bots.

  • Au­thors:
    Nikos Ma­ni­as1, Ge­or­ge Pa­la­mas1, Ge­or­ge Pa­pa­dou­ra­kis1, Ma­no­lis Ka­voussa­nos2
    1De­part­ment of Ap­plied In­for­ma­tics and Mul­ti­me­dia,  Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
    2De­part­ment of Me­cha­ni­cal En­gi­nee­ring, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
  • Key­wor­ds:

In our times, the need of au­to­ma­ti­on of many pro­ces­ses be­co­mes stron­ger and stron­ger. All the time we lis­ten to words such as “Smart homes”, “ro­bots”, “im­pro­ve life qua­li­ty”, “au­to­ma­ti­on in pro­duc­tion” etc. But, why there are no ro­bots in our home yet? What  holds ro­bots back from ma­king dan­ge­rous, im­pos­si­ble or even bo­ring from a human being? The ans­wer to these ques­ti­ons is a pro­blem that exists in the area of ro­bo­tics and au­to­ma­ti­on : the pro­blem of lo­ca­li­za­ti­on and na­vi­ga­ti­on. This pro­blem in­vol­ves mat­ters such as where a robot is and how to move from points A to point B.
The main pur­po­se of this paper is to pre­sent the work that has been done in the area of map­ping of auto-mo­bi­le ro­bots in a free area. The goal of this pro­ject is to ana­ly­ze dif­fe­rent ways of ex­trac­ting ap­pearing-based in­for­ma­ti­on from an image and use them to crea­te a ge­ne­ral  idea of the room the robot is in and to try and solve the pro­blem of lo­ca­li­za­ti­on and na­vi­ga­ti­on. In the image ana­ly­sis part, his­to­grams of two dif­fe­rent color spaces were used to com­pa­re with each other while the robot tries to un­der­stand its po­si­ti­on and the way it has to move.  Mo­reo­ver, de­cis­i­on ma­king al­go­rithms are used by the robot to help it na­vi­ga­te through the room with the as­sis­tan­ce of way­po­ints that were crea­ted pre­vious­ly. Those al­go­rithms are based in three clas­si­fi­ca­ti­on ways : Clas­si­fi­ca­ti­on with pro­to­ty­pes, Clas­si­fi­ca­ti­on with the help of nea­rest neigh­bor and clas­si­fi­ca­ti­on using  neu­ral net­works.
Fi­nal­ly, after an ex­pe­ri­ment is pre­sen­ted, fu­ture pro­s­pects as well are dis­cus­sed.


Index

Life­time Ma­xi­mi­za­ti­on With Mul­ti­ple Batte­ry Le­vels in Ir­re­gu­lar­ly Dis­tri­bu­ted Wire­less Sen­sor Net­works.

  • Au­thors:
    Fe­li­pe An­to­nio Moura Mi­ran­da1, Car­los Al­ber­to dos Reis Filho2
    1State Uni­ver­si­ty of Cam­pi­nas (Uni­camp), Cam­pi­nas, Bra­zil
    2Fe­de­ral Uni­ver­si­ty of the ABC, Bra­zil
  • Key­wor­ds:
    Wire­less Sen­sor Net­works; batte­ry; re­al­lo­ca­ti­on; mote; life­time.


The re­cent ad­van­ces in Wire­less Sen­sor Net­works tech­no­lo­gies showed that while com­pu­ta­tio­nal li­mi­ta­ti­ons are tran­si­ent is­su­es, en­er­gy li­mi­ta­ti­ons are much more com­pli­ca­ted pro­blems. In this work, a stra­te­gy ai­ming the life­time in­cre­ment of Wire­less Sen­sor Net­works is pro­po­sed. The main mo­ti­va­ti­on of this work is that en­er­gy li­mi­ta­ti­on is a se­rious in­herent pro­blem to Wire­less Sen­sor Net­works, cau­sed by the fact that their motes ge­ne­ral­ly use small bat­te­ries, con­se­quent­ly, with a small amount of en­er­gy. Be­si­des that, chan­ging bat­te­ries after all motes de­ploy­ment is such a hard task, re­sul­ting in short life­times and en­er­gy waste.

The stra­te­gy pro­po­sed in this work is based on the en­er­gy al­lo­ca­ti­on gui­ded by the esti­ma­ti­on of each node's con­sump­ti­on, no mat­ter what is the net­work to­po­lo­gy. The va­li­da­ti­on of this stra­te­gy was made by mean of si­mu­la­ti­ons using motes made with mo­dels of many com­mer­ci­al de­vices used in real net­works. To eva­lua­te the stra­te­gy ef­fec­tiveness, it was tested on dif­fe­rent net­works to­po­lo­gies, achie­ving net­work life­time in­cre­ment and en­er­gy waste re­duc­tion on all sce­na­ri­os.

Index

In­tro­duc­tion to QT Pro­gramming.

  • Au­thors:
    Gho­drat Mog­hadam­pour
    Vaasa Uni­ver­si­ty of Ap­plied Sci­en­ces,
    Vaasa, Fin­land
  • Key­wor­ds:

Qt is a cross-plat­form ap­pli­ca­ti­on frame­work wi­de­ly used for de­ve­lo­ping dif­fe­rent types of ap­pli­ca­ti­on soft­ware. Qt is used by some fa­mous or­ga­ni­za­ti­ons like Eu­rope­an Space Agen­cy, Sie­mens,[Sam­sung Phil­ips and Pa­na­so­nic in some well-known ap­pli­ca­ti­ons like Goog­le Earth, KDE, Skype.
Qt uses stan­dard C++ but makes ex­ten­si­ve use of Meta Ob­ject Com­pi­ler (MOC) to­ge­ther with seve­r­al ma­cros to en­rich the lan­guage. Qt runs on the major desk­top plat­forms and some mo­bi­le plat­forms. It has ex­ten­si­ve in­ter­na­tio­na­li­za­ti­on sup­port and in­clu­des tools for SQL da­ta­ba­se ac­cess, XML par­sing, th­re­ad ma­nage­ment, net­work sup­port, and a uni­fied cross-plat­form API for file hand­ling.
Qt is free open source soft­ware. All edi­ti­ons sup­port a wide range of com­pi­lers, in­clu­ding the GCC C++ com­pi­ler and the Vi­su­al Stu­dio suite.
In this in­tro­duc­tion we go through the back­ground and phi­lo­so­phy be­hind QT pro­gramming lan­guage and learn how to de­ve­lop mo­bi­le ap­pli­ca­ti­ons using QT lan­guage.

Index

GEN­SEN Pro­ject: New Plat­forms and Ap­pli­ca­ti­ons in Wire­less Au­to­ma­ti­on.

  • Au­thors:
    Heik­ki Pa­lo­mä­ki:
    Sein­ä­jo­ki Uni­ver­si­ty of Ap­plied Sci­en­ces,
    Sein­ä­jo­ki, Fin­land
  • Key­wor­ds:

Sein­ä­jo­ki Uni­ver­si­ty of Ap­plied Sci­en­ces took part in the re­se­arch and de­ve­lo­ping pro­ject Ge­ne­ric Sen­sor Net­works for Wire­less Au­to­ma­ti­on (GEN­SEN). The pro­ject was done in co­ope­ra­ti­on with Vaasa Uni­ver­si­ty and Aalto Uni­ver­si­ty. The pro­ject was fun­ded main­ly by the Fin­nish Agen­cy for Tech­no­lo­gy and In­no­va­ti­on (TEKES). Also seven com­pa­nies from va­ria­ble ap­pli­ca­ti­on areas par­tici­pa­ted in fun­ding. The main ob­jec­ti­ves of the pro­ject were the de­ve­lop­ment of ge­ne­ric sen­sor net­wor­king plat­form for wire­less au­to­ma­ti­on, pro­to­col stack de­ve­lo­ping, sys­tem va­li­da­ti­on and tes­ting through case stu­dies and eva­lua­ti­on of the com­mer­cia­li­za­ti­on ca­pa­bi­li­ties.
The GEN­SEN re­se­arch group in Sein­ä­jo­ki de­ve­lo­ped a mesh to­po­lo­gy wire­less net­work, pro­gramming en­vi­ron­ment for ultra-low-power small-size sen­sor nodes and a new stack­a­ble hard­ware plat­form with seve­r­al sen­sors. The re­se­arch groups in Vaasa and Hel­sin­ki de­ve­lo­ped a high per­for­mance, ver­sa­ti­le and mo­du­lar sen­sor plat­form struc­tu­re for de­man­ding time-cri­ti­cal ap­pli­ca­ti­ons. They re­se­ar­ched also the busi­ness po­ten­ti­al of the wire­less sen­sor sys­tems. The Hel­sin­ki re­se­arch group de­ve­lo­ped a uni­ver­sal A-stack com­mu­ni­ca­ti­on pro­to­col for wire­less sen­sor de­vices. The exis­ting and new plat­forms are tested in some ap­pli­ca­ti­on areas: crane con­t­rol, green­hou­se sen­sors, con­di­ti­on mo­ni­to­ring, catt­le house au­to­ma­ti­on, and en­er­gy pro­duc­tion sys­tems. Sein­ä­jo­ki UAS tested the low-power sen­sors in a green­hou­se, the mesh net­work to­po­lo­gy in a catt­le house and the data flow in a wind tur­bi­ne. Vaasa Uni­ver­si­ty and Aalto Uni­ver­si­ty tested the exis­ting com­mer­ci­al plat­form and the new plat­form in a green­hou­se, in a catt­le house, in trol­ley cra­nes and in the dis­tri­bu­ted en­er­gy pro­duc­tion.

Index

Co­ope­ra­ti­ve Net­work Trai­ning (CoNeT) Pro­ject.

  • Au­thors:
    Gior­gos Pa­pa­dou­ra­kis1, Mi­cha­el Sfa­kiota­kis2, Hassan Kag­haz­chi3:
    1De­part­ment of Ap­plied In­for­ma­tics and Mul­ti­me­dia, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
    2De­part­ment of Elec­tri­cal En­gi­nee­ring, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
    3Au­to­ma­ti­on Re­se­arch Cent­re, Uni­ver­si­ty of Li­me­rick, Ire­land
  • Key­wor­ds:

Tech­no­lo­gi­cal de­ve­lop­ment has brought the use of net­works in con­t­rol to the main­stream.  Ether­net-based sys­tems are be­co­ming an in­crea­singly at­trac­ti­ve tech­no­lo­gy as they com­bi­ne large ca­pa­ci­ty and high speed with fle­xi­bi­li­ty. New trends in con­t­rol tech­no­lo­gy must be re­flec­ted in the re­spec­ti­ve tea­ching ac­ti­vi­ty. 

In the re­spon­se to the de­mands the con­cept of mo­bi­le la­bo­ra­to­ry was pro­po­sed and has been im­ple­men­ted by the con­sor­ti­um of uni­ver­si­ty and in­dus­tri­al part­ners from six Eu­rope­an  coun­tries and two part­ners from Tur­key.  Karel de Grote-Uni­ver­si­ty Col­le­ge and  Lim­burgs Tech­no­lo­gie-Cen­trum from Bel­gi­um, Uni­ver­si­ty of Rous­se from Bul­ga­ria, Fach­hoch­schu­le Düs­sel­dorf  and Ger­many-Phoe­nix Con­ta­ct from Ger­many,  Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete from Greece, AGH Uni­ver­si­ty of Sci­ence and Tech­no­lo­gy from Po­land, Te­le­Pe­dago­gic Know­ledge Cen­ter from Swe­den, Yil­diz Tech­ni­cal Uni­ver­si­ty and Eno­sad In­dus­tri­al Au­to­ma­ti­on from Tur­key, aUni­ver­si­ty of Li­me­rick, Ire­land – all these part­ner in­sti­tu­ti­on have re­co­gni­zed the de­mand for ef­fici­ent de­ve­lop­ment of qua­li­ty in­dus­tri­al Ether­net sys­tems  and need for de­ve­lop­ment of  in­ter­na­tio­nal lear­ning en­vi­ron­ment.

CoNeT, the EU-fun­ded pro­ject, stands for Co­ope­ra­ti­ve Net­work Trai­ning. The pro­ject  aims at trai­ning of  au­to­ma­ti­on en­gi­neers, main­ten­an­ce en­gi­neers, pro­cess workers and stu­dents both gra­dua­te and un­der­gra­dua­te in mo­dern wired and wire­less in­dus­tri­al net­work tech­no­lo­gy ap­plied to con­t­rol ope­ra­ti­ons and au­to­ma­ted so­lu­ti­ons. The cur­rent trend in en­gi­nee­ring cur­ri­cu­la ap­plies the con­cept of “lear­ning by ex­pe­ri­ments” or “lear­ning by pro­jects”.  Such “lear­ning by doing” con­cept was also pro­po­sed for the col­la­bo­ra­ti­ve pro­ject as a part of the pilot CoNeT im­ple­men­ta­ti­on phase.
The over­all ob­jec­ti­ve of the CoNeT pro­ject is to con­tri­bu­te to the qua­li­fi­ca­ti­on of fu­ture Ether­net-based net­work-spe­cia­lists. The spe­ci­fic ob­jec­ti­ve of the pro­ject  is to de­ve­lop trai­ning mo­du­les in the field of In­dus­tri­al Ether­net for stu­dents, tech­ni­ci­ans and en­gi­neers in in­dus­try. It is an­ti­ci­pa­ted that trai­nees who are al­re­ady em­ploy­ed will need to fit their lear­ning around exis­ting fa­mi­ly or work com­mit­ments, the­re­fo­re the la­bo­ra­to­ry will be bro­ken up into ‘bite-sized’ dis­crete mo­du­les and fle­xi­ble modes of de­li­ve­ry will be used in­clu­ding the use of both di­s­tan­ce  and face-to-face tea­ching. These mo­bi­le  labs can be trans­por­ted bet­ween com­pa­nies and uni­ver­si­ties and used to com­ple­ment the trai­ning cour­ses.


Index

A Guar­di­an Angel For The Ex­ten­ded Home En­vi­ron­ment (GUA­RAN­TEE) pro­ject.

  • Au­thors:
    Gior­gos Pa­pa­dou­ra­kis1, Tsa­m­pi­kos Kounalakis1, De­li­gi­an­nis Io­an­nis1, Nikos Ma­ni­as1, Ge­or­gi­os Tri­an­tafyl­li­dis1, Julie Van­den­abee­le2, Ilkka Uusi­ta­lo3
    1De­part­ment of Ap­plied In­for­ma­tics and Mul­ti­me­dia, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
    2Eagle Vi­si­on Sys­tems, Naar­den, The Ne­ther­lands
    3VTT Tech­ni­cal Re­se­arch Cent­re of Fin­land, VTT, Fin­land
  • Key­wor­ds:

The main pur­po­se of this paper is to in­tro­du­ce the Eu­rope­an Pro­ject en­tit­led “A Guar­di­an Angel For The Ex­ten­ded Home En­vi­ron­ment”  (GUA­RAN­TEE) which is sup­por­ted by the In­for­ma­ti­on Tech­no­lo­gy for Eu­rope­an Ad­van­ce­ment (ITEA2).  The goal of GUA­RAN­TEE is to re­se­arch soft­ware pro­ducts and ser­vices that pro­vi­de per­so­nal safe­ty in the re­si­den­ti­al en­vi­ron­ment. These pro­ducts and ser­vices pro­vi­de di­rect sup­port and ad­vice to peop­le in un­safe si­tua­ti­ons, or they con­nect peop­le and enab le the sup­port of others. The pro­ject will in­ves­ti­ga­te the con­su­mer needs and the com­mer­ci­al op­por­tu­ni­ty for this type of pro­duct. Fur­ther, the pro­ject will de­ve­lop the soft­ware com­po­nents and per­so­nal safe­ty ser­vices as well as the sys­tem and soft­ware ar­chi­tec­tu­re.  GUA­RAN­TEE will de­ve­lop 3 de­mons­tra­tors: for child­ren’s safe­ty, el­d­er­ly safe­ty, and home se­cu­ri­ty. The de­mons­tra­tors in­te­gra­te com­po­nents for sen­sing, de­cis­i­on ma­king, and aler­ting of users. The de­mons­tra­tors com­pri­se both an in-home and net­wor­ked sys­tem for com­mer­ci­al or com­mu­ni­ty ser­vices.  This pre­sen­ta­ti­on will be or­ga­ni­zed as fol­lows:  In­iti­al­ly, an in­tro­duc­tion to Smart Homes and back­ground in­for­ma­ti­on will be pre­sen­ted fol­lowed by a de­tail­ed de­scrip­ti­on of the pro­ject; the va­rious poss­bi­le se­na­ri­os to be im­ple­men­ted  as well as the va­rious availa­ble sen­sors for these se­na­ri­os will then be out­lined. Fi­nal­ly,  pos­si­ble de­cis­i­on sup­port  tech­ni­ques will be dis­cus­sed.


Index

De­cis­i­on En­gi­ne De­sign for GUA­RAN­TEE pro­ject.

  • Au­thors:
    Gior­gos Pa­pa­dou­ra­kis, Tsa­m­pi­kos Kounalakis, De­li­gi­an­nis Io­an­nis, Nikos Ma­ni­as, Ge­or­gi­os Tri­an­tafyl­li­dis:
    De­part­ment of Ap­plied In­for­ma­tics and Mul­ti­me­dia, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, He­ra­kli­on, Crete, Greece
  • Key­wor­ds:

The goal of GUA­RAN­TEE a Eu­rope­an Pro­ject en­tit­led “A Guar­di­an Angel For The Ex­ten­ded Home En­vi­ron­ment”  sup­por­ted by the In­for­ma­ti­on Tech­no­lo­gy for Eu­rope­an Ad­van­ce­ment (ITEA2) and  lead by Phil­ips) is to re­se­arch soft­ware pro­ducts and ser­vices that pro­vi­de per­so­nal safe­ty in the re­si­den­ti­al en­vi­ron­ment. These pro­ducts and ser­vices pro­vi­de di­rect sup­port and ad­vice in un­safe si­tua­ti­ons, or they con­nect peop­le and en­able the sup­port of others. The pro­ject in­ves­ti­ga­tes the con­su­mer needs and the com­mer­ci­al op­por­tu­ni­ty for this type of pro­duct. Fur­ther, the pro­ject will de­ve­lop the soft­ware com­po­nents and ser­vices for per­so­nal safe­ty as well as the sys­tem and soft­ware ar­chi­tec­tu­re.

After a year in the pro­ject and many dis­cus­sions, the GU­RAN­TEE part­ners de­ci­ded to con­cen­tra­te on three main cases, one for ba­bies, one for child­ren in the age of school and el­d­er­ly peop­le with health pro­blems. The de­mons­tra­tors in­te­gra­te com­po­nents for sen­sing, de­cis­i­on ma­king, and aler­ting of users. The de­mons­tra­tors com­pri­se both an in-home and net­wor­ked sys­tem for com­mer­ci­al or com­mu­ni­ty ser­vices.

The main pur­po­se of this paper is to in­tro­du­ce and to pro­vi­de in­for­ma­ti­on about the de­cis­i­on ma­king al­go­rithms that are being de­ve­lo­ped for the de­mons­tra­tors and spe­ci­fi­cal­ly for child­ren in the age of school.  In­iti­al­ly, the de­cis­i­on en­gi­ne needs to be simp­le and ef­fici­ent.

This paper will be or­ga­ni­zed as fol­lows:  In­iti­al­ly, an in­tro­duc­tion to Smart Homes and back­ground in­for­ma­ti­on will be pre­sen­ted fol­lowed by a de­tail­ed de­scrip­ti­on of the de­cis­i­on en­gi­ne. The ar­chi­tec­tu­re of the de­sign will be dis­cus­sed and its abi­li­ty to re­cei­ve any input sen­sor will be il­lus­tra­ted. The ac­tu­al en­gi­ne con­sists of simp­le if-then-else state­ments that were eva­lua­ted by the TEI of Crete de­si­gners. The ge­ne­ra­li­za­ti­on of the en­gi­ne will be dis­cus­sed next, fol­lowed by the fu­ture plans for the de­cis­i­on ma­king al­go­rithms which are con­sisted of using neu­ral net­works, ge­ne­tic al­go­rithms and other al­go­rithms that will be used for the user cases pro­vi­ded.

Index

Har­mo­nic Con­tour Seg­men­ta­ti­on.

  • Au­thors:
    Ta­xi­ar­chis Pa­pa­kos­t­as, De­me­tri­os A. Plia­kis, Con­stan­ti­ne Pe­tri­des, Spi­ros Tha­na­sou­las:
    De­part­ment of Na­tu­ral Re­sour­ces and En­vi­ron­ment, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete, Cha­nia, Crete, Greece
  • Key­wor­ds:


We im­ple­ment the stan­dard geo­de­sic ac­ti­ve con­tours me­thod with the in­tro­duc­tion of weigh­ted esti­ma­tes for the re­la­ted non­line­ar heat equa­ti­on. These esti­ma­tes con­t­rol lo­cal­ly the va­ria­ti­on of in­ten­si­ty, re­ly­ing on ela­bo­ra­ti­on of har­mo­nic in­pain­ting.In­iti­al­ly a cal­cu­la­ti­on of the gra­di­ent pro­vi­des us a crude cal­cu­la­ti­on of the level sets. Then by sol­ving the la­place equa­ti­on in these do­mains we crea­te weights that af­fect the pa­ra­bo­lic term in the evo­lu­ti­on of the ac­ti­ve con­tour. This sche­me can be used to in­iti­al­ly select a so­phi­sti­ca­ted star­ting con­tour that will con­ver­ge ra­pid­ly. Also it pro­vi­des a way to ac­cu­ra­te­ly con­t­rol the glo­bal stop­ping cri­te­ri­on of the al­go­rithm. In ad­di­ti­on we pro­vi­de an im­ple­men­ta­ti­on in a func­tional LISP va­ri­ant that can ex­ploit par­al­lel ar­chi­tec­tu­res using MPI and the Map/Re­du­ce pa­ra­digm.

Index

How to or­ga­ni­ze an Eras­mus In­ten­si­ve Pro­gram: A study case in the De­part­ment of Elec­tro­nics of TEI of Crete.

  • Au­thors:
    C. Pe­tri­dis1, K. Tsi­tou1, E. Mav­ro­gior­gou2, I. Ka­lia­kat­sos1 and M. Ta­ta­ra­kis1:
    1De­part­ment of Elec­tro­nics, Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te (TEI) of Crete, Cha­nia Branch, GR-73133 Cha­nia, Crete, Greece
    2 IKY State Schol­ar­ships Founda­ti­on, Greece
  • Key­wor­ds:

The De­part­ment of Elec­tro­nics of the Tech­no­lo­gi­cal Edu­ca­tio­nal In­sti­tu­te of Crete has de­mons­tra­ted a 20 years ex­pe­ri­ence in Eu­rope­an stu­dents and staff mo­bi­li­ty pro­grams.
This in­vol­vement has ad­ver­ti­zed the De­part­ment across Eu­ro­pe and was the dri­ving force of the in­itia­ti­on of the co­ope­ra­ti­on with top Uni­ver­si­ties and re­se­arch groups world­wi­de.
More spe­ci­fi­cal­ly the De­part­ment of Elec­tro­nics the last 5 years has suc­cess­ful­ly or­ga­ni­zed and still hosts a num­ber of Eras­mus In­ten­si­ve Pro­grams in the fiel­ds of (a) Op­to­elec­tro­nics & La­sers (OLA 2006 -08), (b) Or­ga­nic Elec­tro­nics & Ap­pli­ca­ti­ons (OREA 2010 – 12) and (c) in Laser Fu­si­on & Ap­pli­ca­ti­ons (APE­P­LA 2010 – 12).

The suc­cess­ful or­ga­ni­za­ti­on of these events is very im­por­tant in order to:

(a) Es­ta­blish new re­se­arch col­la­bo­ra­ti­ons in the cor­re­spon­ding fiel­ds and tech­no­lo­gies.
(b) Ex­chan­ge of ideas con­cer­ning tea­ching and pre­sen­ta­ti­on me­thods
(c) De­ve­lop new In­ten­si­ve Pro­grams in other sci­en­ti­fic fiel­ds
(d) En­rich the cur­ri­cu­lum of your Uni­ver­si­ty with a new in­no­va­ti­ve mo­du­le
(e) Sign Eras­mus Bi­la­te­ral Agree­ments bet­ween the col­la­bo­ra­ting In­sti­tu­ti­ons
(f) De­ve­lop col­la­bo­ra­ti­on in other Eras­mus Pro­jects (Mun­dus, Cur­ri­cu­lum De­ve­lop­ment) 

The ob­jec­ti­ve, thus, of the paper is to pre­sent the ex­pe­ri­ence that the De­part­ment of Elec­tro­nics has acqui­red through its in­vol­vement in the Eras­mus In­ten­si­ve Pro­grams. The im­ple­men­ta­ti­on of (a) – (e) tar­gets will be pre­sen­ted through the eva­lua­ti­on of the ques­ti­onn­aire sheets that had been dis­tri­bu­ted to the par­tici­pants and through the pre­sen­ta­ti­on of new Eras­mus pro­jects and bi­la­te­ral agree­ments that have been si­gned among the col­la­bo­ra­ting Uni­ver­si­ties.
It is hoped that this paper will work as a “re­ci­pe book” for new sci­en­tists how to start, or­ga­ni­ze, run and fi­na­li­ze suc­cess­ful­ly an IP Pro­gram. 

Index

A fol­low-up on Chal­len­ge Based Lear­ning pro­ject in Em­bed­ded En­gi­nee­ring Edu­ca­ti­on.

  • Au­thors:
    Anssi Iko­nen
    Hel­sin­ki Me­tro­po­lia Uni­ver­si­ty of Ap­plied Sci­en­ces,
    Espoo, Fin­land.
  • Key­wor­ds:

Paper pro­vi­des a fol­low up on a pro­ject based lear­ning pro­ject which was in­tro­du­ced in AmiEs-2010 Sym­po­si­um in Geel, Bel­gi­um. The pro­ject de­scri­bed in this paper and pre­sen­ta­ti­on is based on a study of pro­ject based lear­ning in en­gi­nee­ring edu­ca­ti­on which star­ted in Me­tro­po­lia Uni­ver­si­ty of Ap­plied Sci­en­ces on aca­de­mic year 2004. The pro­ject is the 7th an­nu­al pro­ject which took place du­ring the spring se­mes­ter of the aca­de­mic year 2010 – 2011. The paper de­scri­bes the cur­rent im­ple­men­ta­ti­on of the pro­ject, ana­ly­sis of lear­ning out­co­mes as well as ana­ly­sis of the im­ple­men­ta­ti­on of the pro­ject.
The lear­ning pro­ject is tar­ge­ted to 2nd year en­gi­nee­ring stu­dents in the de­part­ment of In­for­ma­ti­on Tech­no­lo­gy in Hel­sin­ki Me­tro­po­lia Uni­ver­si­ty of Ap­plied Sci­en­ces as part of their basic stu­dies. It is the first re­se­arch and de­ve­lop­ment pro­ject for the en­gi­nee­ring stu­dents pro­vi­ding an in­sight to R&D pro­cess. Uni­que cha­rac­te­ristic of the pro­ject is the chal­len­ging na­tu­re of the pro­ject where the goal is to de­sign a pro­duct based on em­bed­ded sys­tem that will suc­ceed in a com­pe­ti­ti­on against other si­mi­lar pro­ducts de­si­gned by other pro­ject teams. Due the com­pe­ti­ti­ve na­tu­re of the pro­ject it has been named by the au­thors as Chal­len­ge Based Lear­ning pro­ject. As­sess­ment of the pro­ject is based part­ly on the suc­cess as well as on the lear­ning pro­cess and do­cu­men­ta­ti­on.
The pro­ject was in­tro­du­ced in AmiEs-2010 sym­po­si­um and this paper and pre­sen­ta­ti­on of­fers a fol­low up on the im­ple­men­ta­ti­on of the pro­duct. In AmiEs-2010 va­lu­a­ble feed­back for the pro­ject and its im­ple­men­ta­ti­on was re­cei­ved and the pro­ject was de­ve­lo­ped fur­ther.

Index

A smart ca­me­ra based on an op­ti­cal mouse sen­sor.

  • Au­thors:
    Jas­per Ren­ders1, Kevin Ver­waest1, Luc Fri­ant1, Marco Ca­mil­li2and
    Ri­chard Klei­horst3
    1
    Ka­tho­lie­ke Ho­ge­school Kem­pen, Geel, Bel­gi­um
    2 VITO NV, Mol, Bel­gi­um
    3 VITO NV, Mol, Bel­gi­um and Ghent Uni­ver­si­ty-IBBT, Ghent, Bel­gi­um
  • Key­wor­ds:

We de­ve­lo­ped a low-cost and low power smart ca­me­ra based on an op­ti­cal mouse (or laser mouse) sen­sor chip. It is in­ten­ded for sys­tems that use an am­bi­ent sen­sor net­work to give in­for­ma­ti­on on the scene and re­port to a con­t­rol sys­tem (Fi­gu­re 1).

Fi­gu­re 1, The lens side of the de­ve­lo­ped vi­su­al sen­sor node. The board fits in a space of 62x41x20mm.

Fi­gu­re 2, the HW/SW ar­chi­tec­tu­re of the vi­su­al sen­sor node. A DMA does the data strea­ming gi­ving all pro­ces­sing power to the user pro­gram.

It uses a dsPIC mi­cro­con­trol­ler for image pro­ces­sing an RF mo­du­le, (now 433MHz) for com­mu­ni­ca­ti­on and a DC to DC con­ver­ter that al­lows the batte­ry to be de­ple­ted down to 0.3V. The mi­cro­con­trol­ler is a tiny DSP (dsPIC33), ha­ving a dou­ble Har­vard bus for pro­ces­sing, on-chip flash and RAM me­mo­ry and a DMA con­trol­ler working with hard­ware blocks for SPI/I2C/UART in­ter­faces. The DMA and hard­ware in­ter­faces leave much of the pro­ces­sing power for user vi­si­on end-ap­pli­ca­ti­ons (Fi­gu­re 2). While the per­for­mance is (only) 40­MIPS on 16bit data, the 30x30 image al­lows around 1000 in­st­ruc­tions per pixel at 30 fps. A user pro­gram can be writ­ten in ANSI C and com­pi­led with com­mer­ci­al and free com­pi­lers for the dsPIC.

 

For proof of con­cept, we por­ted some vi­si­on al­go­rithms to the mouse sen­sor. In order of com­ple­xi­ty: edge de­tec­tion, dual slope back­ground sub­trac­tion, 3D re­cur­si­ve se­arch block-matching for mo­ti­on esti­ma­ti­on and Viola Jones’s face de­tec­tion. (Fi­gu­re 3).

Fi­gu­re 3, the images show snapshots of mouse-based video ana­ly­tics: edge de­tec­tion, 3DRS mo­ti­on esti­ma­ti­on (the mo­ti­on ve­c­tors are dis­played as co­lours), the fo­re­ground image of a dual slope back­ground esti­ma­ti­on al­go­rithm and Viola Jones’ face de­tec­tion.

Index

Prac­ti­cal use of En­er­gy Ma­nage­ment Sys­tems.

  • Au­thors:
    J. Reyn­ders1, M. Spe­lier1, N. Maes1, G. Van Ham1, B. Vande Meers­sche1, G. De­co­ninck2
    1KH Kem­pen Uni­ver­si­ty Col­le­ge, Geel, Bel­gi­um
    2K.​U.​Leuven, He­ver­lee, Bel­gi­um
  • Key­wor­ds:

This paper dis­cus­ses dif­fe­rent off-the-shelf tech­no­lo­gies for en­er­gy mea­su­re­ment and com­mu­ni­ca­ti­on that are use­ful for a glo­bal en­er­gy ma­nage­ment sys­tem (EMS). These tech­no­lo­gies are aimed to be used in an en­er­gy ma­nage­ment sys­tem that is im­ple­men­ted in Lab­VIEW to con­t­rol the elec­tri­ci­ty de­mand in a more ef­fici­ent way. In ad­di­ti­on a SWOT-ana­ly­sis of the dif­fe­rent con­side­red sys­tems sum­ma­ri­zes the prac­ti­cal ex­pe­ri­en­ces and gives some op­por­tu­nities for fur­ther de­ve­lop­ment of EMS.

Index

Hard­ware for Elec­tro Car­diac and Re­spi­ra­to­ry Ple­thys­mo­gra­phy Mea­su­re­ment in a Multi Vital Signs Mo­ni­to­ring Sys­tem.

  • Au­thors:
    S. Ur­sel­la, G. Schoe­ne­berg, A. Hein­zel­mann:
    In­tersta­te Uni­ver­si­ty of Ap­plied Sci­en­ces of Tech­no­lo­gy Buchs NTB,
    Buchs, Swit­zer­land
  • Key­wor­ds:

Mo­ni­to­ring and re­cording the vital me­di­cal pa­ra­me­ters of pa­ti­ents in hos­pi­tals is of pro­found im­por­tan­ce and re­qui­res much ef­fort by me­di­cal staff. Howe­ver, this mo­ni­to­ring means re­du­ced com­fort and ease for more mo­bi­le or am­bu­lant pa­ti­ents.

This pro­ject de­ve­lo­ped a first de­sign pro­to­ty­pe ca­pa­ble of tracking, in a non-in­va­si­ve man­ner, im­por­tant pa­ra­me­ters such as the elec­tro­car­dio­gram (ECG), body tem­pe­ra­tu­re, oxy­gen sa­tu­ra­ti­on (SpO2), pulse and re­spi­ra­ti­on. The me­thod of re­spi­ra­to­ry in­duc­tan­ce ple­thys­mo­gra­phy (RIP) for tho­rax and/or ab­do­men was in­ves­ti­ga­ted. Also, an ac­ce­le­ra­ti­on sen­sor for mo­vement and fall de­tec­tion was rea­li­zed. In fu­ture, if fea­si­ble, bet­ter al­go­rithms for the above-men­tio­ned vital signs will be im­ple­men­ted. The de­scri­bed pro­to­ty­pe is a first ap­proach to com­bi­ning mea­su­re­ment of these vital signs in one de­vice on the human body. The goal is to ob­tain the best pos­si­ble me­di­cal data with op­ti­mal com­fort and nor­mal mo­bi­li­ty for pa­ti­ents.

The pro­ject also in­clu­des ways to im­ple­ment and op­ti­mi­ze an ad­ap­ti­ve 1 to 12 - chan­nel ECG in the new sys­tem. Also, an im­pe­dance ana­ly­sis of a RIP-belt and a com­pi­la­ti­on of mea­su­re­ment me­thods for re­spi­ra­to­ry pa­ra­me­ters are de­scri­bed. As well as fur­ther im­pro­ving the sen­sor si­gnals and the al­go­rithms, one of the next steps will be to ex­pand the em­bed­ded sys­tem with wire­less com­mu­ni­ca­ti­on at 2.4 GHz.

Index

De­ve­lo­ping New So­lu­ti­ons for Smart Grid.

  • Au­thors:
    Smail Menani
    Vaasa Uni­ver­si­ty of Ap­plied Sci­en­ces,
    Vaasa, Fin­land
  • Key­wor­ds:

The paper de­scri­bes the de­sign re­qui­re­ments for Smart Meter based on the most re­cent tech­no­lo­gies in this field.

To a carry on the de­sign it was ne­cess­a­ry to in­ves­ti­ga­te the grid in­fra­st­ruc­tu­re, the data re­qui­re­ment and other tech­ni­cal cons­traints to plan the sys­tem ar­chi­tec­tu­re and choo­se the most ade­qua­te tech­no­lo­gy to sup­port new so­lu­ti­ons for the smart grid. Back-end ap­pli­ca­ti­ons in­te­gra­ted with Ora­cle data base was also de­ve­lo­ped to im­ple­ment new func­tions and so­lu­ti­ons as re­qui­red by both uti­li­ty and custo­mers of the elec­tri­cal grid.

Index

ACE and ISPS – An In­no­va­ti­ve Ap­proach to Pro­mo­ting In­ter­na­tio­nal Stu­dent Ex­chan­ge Pro­grams.

  • Au­thors:
    Hel­mut Di­spert1, Jo­seph A. Mor­gan2, Mark Mc­Ma­hon3, Chris­ti­ne Bou­din4
    1 Fa­cul­ty of Com­pu­ter Sci­ence and Elec­tri­cal En­gi­nee­ring - 4 In­ter­na­tio­nal Of­fice,
    Kiel Uni­ver­si­ty of Ap­plied Sci­en­ces, Kiel, Ger­many
    2 De­part­ment of En­gi­nee­ring Tech­no­lo­gy and In­dus­tri­al Dis­tri­bu­ti­on, Texas A&M Uni­ver­si­ty, Col­le­ge Sta­ti­on, TX, U.S.A.
    3 School of Com­mu­ni­ca­ti­ons & Arts, Edith Cowan Uni­ver­si­ty, Perth, Aus­tra­lia
  • Key­wor­ds: ACE, Aca­de­mic Clea­ring-House of Ex­cel­lence, ISPS, In­ter­na­tio­nal edu­ca­ti­on, team-ori­en­ted edu­ca­ti­on, pro­ject-based lear­ning

In­sti­tu­ti­ons of hig­her edu­ca­ti­on have to de­ve­lop new in­fra­st­ruc­tu­res and ex­per­ti­se to cope with chan­ging stu­dent re­qui­re­ments and shif­ting de­mands from in­dus­try and go­vern­ment.

New edu­ca­tio­nal ap­proa­ches are nee­ded to keep up with glo­ba­li­za­ti­on and other tech­no­lo­gi­cal ad­van­ces.

This paper out­lines a new in­no­va­ti­ve ap­proach to allow stu­dents to get both – in­ter­na­tio­nal ex­pe­ri­ence and prac­ti­cal, pro­ject-ori­en­ted know-how. The In­ter­na­tio­nal Study and Pro­ject Se­mes­ter (ISPS) de­fi­nes a study pe­ri­od fully in­te­gra­ted into a ba­che­lor's or mas­ter's study pro­gram du­ring which stu­dents will spend a study-ab­road se­mes­ter at a selec­ted part­ner in­sti­tu­ti­on. Par­tici­pa­ting stu­dents will be ac­tive­ly in­vol­ved in a multi­di­sci­pli­na­ry team-ori­en­ted pro­ject stron­gly re­la­ted to uni­ver­si­ty or in­dus­try based re­se­arch and de­ve­lop­ment. Ad­di­tio­nal­ly they will study a pre­de­fi­ned num­ber of sub­jects re­la­ted to their area of focus.

The em­pha­sis of ISPS is on high-qua­li­ty pro­ject work car­ri­ed out by in­ter­na­tio­nal teams, ac­com­pa­nied by a spe­cia­li­zed study pro­gram from the host uni­ver­si­ty's stan­dard re­per­toire.
To co­or­di­na­te the ISPS ac­ti­vi­ties, the re­cent­ly in­tro­du­ced Aca­de­mic Clea­ring-House of Ex­cel­lence (ACE) will be em­ploy­ed, gi­ving po­ten­ti­al can­di­da­tes easy ac­cess to glo­bal­ly availa­ble ISPS-com­pa­ti­ble R&D pro­jects of­fe­red in new in­no­va­ti­ve growth areas.


Index